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Abstract—Discrete viscous lattices are studied in order to mathematically simulate the propaga-
tion of general disturbances in semi-infinite, elastic and viscoelastic periodic composites.
Integral transform techniques are employed to derive exact and approximate solutions for the
cases in which viscosity is introduced to the elastic lattice by adding dash pots in both series
and parallel with the springs connecting adjacent particles. Solutions for the continuum models
(for vanishing lattice spacings) are also derived either directly or as special cases. It is demon-
strated that the effect of the periodic discretization in these systems induces oscillation about the
continuum solutions. Comparison of the exact and approximate results shows excellent
correlation, particularly near the wave front.

1. INTRODUCTION

A review of the existing literature on structural composites reveals no exact analytical
solutions for the propagation of general disturbances (transient motions) on periodic
composites. Approximate transient solutions for a wide variety of periodic composites have
been derived, however, by Fourier synthesizing pulses from the low frequency portions of the
composite’s dispersion relations. The resulting solutions are judged to be valid only in the
so-called “far field,” and have been termed the ‘“Head of the Pulse” approximationf1].
Assessment of the ranges of validity of these solutions has been the subject of some investig-
ations.

With this in mind, Drumheller and Sutherland[2] recently pointed out that the geometric
dispersion observed in a wide variety of composites is believed to result mainly from the
spatial periodicity rather than from the precise shape of the reinforcing elements. On the basis
of this observation, and in the interest of studying the transient response of periodic composites
to externally applied pulses, these authors suggested modeling such composites as distri-
butions of periodically laminated plates. They refer to the laminated plates as * continuous
lattices as opposed to ““discrete lattices of point masses and springs.

Probably the simplest periodic system is the discrete lattice made up of equal masses
connected by identical elastic springs as shown in Fig. 1(a). While exact disperston relations
for the propagation of harmonic waves on discrete lattices have been known for along time[3],
exact transient motions of such lattices are relatively new, especially those of the semi-
infinite chains (see for example [4-6]). The exact transient solutions obtained in [4-6] are
observed to exhibit the same general behavior as the far field approximate solutions of the
elastic composites (see for example [7-9]).

Far field solutions similar to those derived in [7, 8] can also be obtained for the discrete
lattice simply by utilizing a Taylor series expansion in terms of small lattice spacing. The
resulting approximate solutions are found to correlate well with exact results especially near
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the wave front. With the lack of exact transient solutions for the composites, this correlation,
together with the many basic similarities between the lattice and the periodic composites
(see [2]), provide additional impetus to studying more complicated lattices in order to qualit-
atively investigate the influence of other physical effects on composites. One such effect which
will be discussed in detail in the following, is viscosity.

As distinguished from the geometric dispersion mentioned above, pulse profile data on a
number of composites have also shown a strong evidence of viscoelastic behavior[10].
Sve[11] has investigated the influence of viscosity on the far field response of composites
by allowing the wave number to be complex. In this paper the transient motion of viscoelastic
composites is mathematically simulated by studying the corresponding response of the
semi-infinite monoatomic lattice which includes a dissipative mechanism. Exact and asymp-
totic solutions are obtained for the cases in which viscosity is introduced by adding dash
pots in series (Maxwell model) and parallel (Voigt model) with the springs connecting
adjacent particles as shown in Figs. 1(b) and I{c), respectively.

(b) —O’\/\/I:JI—O“\/\A:}——O’\
A
. orgioryio

Fig. 1. The lattice models.

At this stage it is appropriate to indicate that the present analysis does not suggest model-
ing periodic composites as discrete lattices. It is merely intended to assess (through the
correlation of exact and approximate solutions of lattices) the validity of the composite’s
approximate solutions. One may suggest, however, that a better simulation of a composite,
such as the laminated plates, may be constructed by considering a diatomic lattice. An
attempt to consider transient motions on such a lattice reveals that, as in the case of com-
posites, analytic solutions are quite difficult to obtain. One can obtain asymptotic solutions,
however, which can be shown to behave not unlike the asymptotic solutions of the monatomic
chain. Thus, without any loss in mathematical generality, it often suffices to treat only the
case of the monatomic lattice.

2. THE PURELY ELASTIC LATTICE

Before proceeding to study the influence of viscosity, we give a quick review of the purely
elastic problem solved in [6]. The mathematical problem treated in [6] is

i, = 0ty — 2t + t,_ 1), n=1,23,..., {1a)
uo(t) = ¢(1), (1b)
4,(0) =1,(0) =0, (to)
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where w? = k/m, k is the spring constant, m is the particle mass, superposed dots stand for
time derivatives, and ¢(¢) is a prescribed function of time.

The solution to this problem is found by taking Laplace transform with respect to time,
followed by setting

@(p) = $(P)X"(p), )
where ,(p) is the Laplace transform of u,(1), to obtain the characteristic equation
X2 - 2[(p* 20"y + 11X +1=0. {3
Equation (3) has two roots; the relevant one is
X =[(p)2w) ~ |(p2w)* + 1'% (4)

which, if substituted into (2) and Laplace transform inversion tables are used, yields

wo=2 (s L~ [ 1] )] (s2)
= jﬁ Bt — VW5 207) 5‘;, (5b)

where J,, represents the Bessel function of the first kind.
The integral (5b) was evaluated numerically for n = 10, w = (5 and the response for the
constant velocity boundary condition (¢(f) = F1) vs time is labeled by o = 0 in Fig. 2

3 DASH POTS IN SERIES

Considering only nearest-neighbor-interactions, we write the equation of motion for the
nth particle in Fig. 1(b) as

mil, = F,, n=1,2,3 ..., (6)

where F,, is the total force exerted on this particle by the springs and dash pots that link i,

respectively, with particle (# — 1} and particle {n + 1). To obtain the value of F,, we use

the following notation: F,, and F,,; stand for the forces exerted on the nth particle from the

right and the left sides, respectively; &, &y, &, and g,; designate the relative displacement

of the closest right spring, left spring, right dash pot and left dash pot to the nth particle,
respectively. In terms of particle displacements we have

Esr +8m~ =Uypy Uy, f7a}
B By = Uy — U,y {(7b)

With this notation, a free body diagram yields

F,=F, — F,, (8a)
with
Fw = kgsr = yéw > (Sb}
Fnl = kE’sl = ?évt ’ (8C)

1JSS Vol 10 Ne. 2—G
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where k designates the spring constant and y is the dash pot’s viscosity. Equations (7) and
(8) may be combined to obtain
F, F

L ,
=, ©
where’
& = Uy ~2“1:‘*_un-l' (10)

Substituting for F, from (6) into (9), using (10} and the fact that the chain is assumed to be
initially at rest, yield the equation of motion

fhy + 20, = 0ty 1 — 2, + U, ), an
where
a=ki2y, o =km (12)

Equation (11) together with the initial and boundary cenditions (Ib, ¢) completely describe
the motion of the chain.

When a vanishes, equation (11) reduces to equation (la). For nonvanishing o, however,
the analysis used in [6] leads to

[(p+a? =] [(p+of = TV
' 2w { 4? + :{ } ]

(13)

() =1 [(}5{p){
Notice that the expression (13), except for ¢(p), can be obtained from the corresponding
expression for the nonviscous case (5a) if we replace p by (p? + 2ap)'/2,
We may invert (13) by recourse to the convolution theorem, the shifting rule, and pub-
lished tables of Laplace transforms (see for example [12}1)

! I 2 _ 12
L7HGUp ~ BT =g() + B [ g(s) LB(2 — s9)12)
(4]

W SdS, (14)

where I, is the Bessel function of the second kind. For the present problem, g(¢) is the
inverse transform of (13) when « = 0 and @(p) = 1; it is given in [6] as

2
9 == D200, n=1,2.3,... (15)

Thus, (13-15) finally yield the general solution

i B 1 W T 1 ( 2 SB 172
u (1) = 2n _{0 ot — e [; I 2w1) + o JO Iy 2e0s) -—ll(g;;ﬁs——z—-)%,z——-] ds} dr. (16)

For the special case of a constant boundary velocity ¥, ¢(t) = Vt, and (16) takes the form

Il [O((T 2 __ SZ)I/Z]
T

t T
i,(f) = 2nV f e EJz,,(zm)+ « [ Jp(205) ds] d. (17
O Yo

1 In {i12] Formula (I.1.61) incorrectly omits 3 from the argument of the Bessel function. We also note a
basic difference between the table’s definition of the Laplace transform and that used here; in [12] and [13],
Carson transform is used, i.e. in our notation pg(p) — g(p).
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3.1 The continuum limit

A continuum description of the lattice may be obtained in the limit as the lattice spacing
tends to zero. If we assume that u,,, and u,_, admit Taylor series expansions {(assumed
asymptotic) about u, = u then, to the first order of approximation, equation {11) reduces to

i +2an —w?ad*u” = 0. (18)

Here, “a” is the lattice spacing (assumed vanishingly small), and superposed primes denote
differentiation with respect to the continuous x-coordinate; in equation (18), x = na. Re-
ferring to (14) and taking the Laplace transform of (18), it is easily found that the function
g(t) associated with (18) is now given by

g(1) = o(t — z), (19)

where z = x/¢, ¢ = wa is the phase velocity of the continuum, and 6(—) is the dirac delta
function.
Replacing (15) by (19), the solution (16) now reduces to

—ae Di[a(e® — 2%)12]

u(x, t) = ¢t — 2)e”* +az J‘t ot — 1)e dt for t>z.  (20)

(12 — z)1/?
In particular, (17) reduces to
ulx, ) . b hlw(e? = 2%
% =g -+(XZJ.€ J—(";'i——zz)i/—z-——d'[, t >z, (2])

3.2 Discussion and numerical results

Inspection of the solution (21) shows that it consists of a wave propagating in the x-
direction with velocity ¢ = wa. For a fixed x, it also shows that the velocity is discontinuous
at the wave front. The magnitude of this discontinuity can be obtained by setting t = z in
(21), resulting in

[i(x, )] = Ve~ =, (22)

where the square brackets denote the jump discontinuity. For ¢ > z, the velocity varies
according to (21); its final value as t - co being the boundary valuet (0, t) = V.

Using a Gaussian quadrature routine, the general integral in (17), together with the
solution obtained for the continuous model (21), were evaluated as functions of time at the
location of the 10th mass, for a varying number of o’s. Results are depicted in Fig. 2. The
parameter w is chosen arbitrarily as 0-5. Examination of this figure reveals the interesting
phenomena that the effect of discretization in the system is to introduce oscillations about
the continuous system’s behavior. The amplitudes of the oscillations damp out faster for
larger «’s. In general, as ¢ — co, the solutions of the continuous and the corresponding
discrete systems asymptotically approach the limiting (as  — o) value of the boundary
input.

t This asymptotic conclusion can be shown by using the shifting formula, the tabulated inverse Laplace
transform formula (see [14], p. 329, No. 93), and the limit as the transform parameter p — 0.
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Fig. 2. Transient results for the constant boundary velocity.
4. DASH POTS IN PARALLEL
For this case we have
Egp =y Slpyy — U Eg =€y S U, — Uy, (23)

and each spring and dash pot supports a different force. Considering again nearest-neighbor-
interactions, the forces F,, and F,, (see Fig. 1c) are now given by

d

Fnr = kgsr + yévr = (k -+ Y a) (un+1 - un)’ (24)
. d

F, =keg+ i, = (k +y a) (tt, = thy—y)- (25)

Equations (8a) and (23-25) yield

d

where d/dt stands for the time derivative.
Combining equations (26) and (6) results in

d
ty =021+ B ) G = 2, + 1) @

where f = y/k and w? is given in (12). Equation (27) and the initial and boundary conditions
(1b, ¢) completely define the motion of the chain.
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The method used in [6] now yields

= 2 1/292n
un(p):{ P __( P +1) } _ 28)
o(p) 12001+ Bp)**  \dw?(1 + fp)
Again, the right hand side of (28) can be obtained from the corresponding expression for
the problem solved in [6] if we replace p by p/(1 + Bp)'/?. Comparatively speaking, the Lap-
lace transform inversion process of the expression (28) is algebraically more involved and
leads to solutions that are more complicated than the treatment of (13).
In order to obtain the inverse of (28), we use the powerful theorem (see {13]) which states:
“If the transform of g() is §(p) and that of K(t, n) is y(p)e™ ™", then the transform of

[ Kungm dn is 5O, (29)

where y(p) and v(p) are continuous functions of p, independent of #, Re[v(p)] = p; >0,
n real and > 0.” For the present problem, v(p) = p/(1 + Bp)'/?, g(1) is the function given in
(15), and K{(t, n) is to be determined.

For the special case y(p) = 1/p, K(t, n) represents the solution for the propagation of a
unit step displacement function that is applied to the free surface of a semi-infinite one-
dimensional viscoelastic (of Voigt type) medium[15]; it is given by

K(t, n) = f: Llaels - ¢ \/la Expl - - 7)
+ -;— [e“s erfc (2—\{/—: - \/;) - erfc(-z—\—s/—i -h/?)]} ds, (30)
where

E=ﬁ/ﬂa T=t/5a

and erfc(x) is the error function defined as

2 2
— e % du. 31
N fx (31)
The solution (30) yields the resuits: K{1,0) = 1, K(oc, ) = 1 and K(0,n) = 0.Its full spectrum
is depicted in Fig. 3. Thus, for ¢(p) = 1/p, which corresponds to the unit step boundary
condition u(t) = H(t), the response of the lattice is given by

erfc(x) =

o]

uft) = 2nf

d
K(t, m)n20m) ;?1’ : (32)
O

The response of the lattice to the general boundary condition (1b) canbe obtained by first
differentiating (32) with respect to time then convoluting the result with ¢(1). In this manner,
we get

t o d
w) =20 [ - K miscon ) da. (33
0 o)

where

3
K*(t,m) == K(1, n).
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Fig. 3. A spectrum of the solution (30).

For the corresponding continuum model, i.e. when the lattice spacing tends to zero,
equation (19) again replaces (15) and thus reduces (32) to (30) with z replacing 5.

4.1 Asymptotic results and applications to composites

In the previous section, exact solutions for equation (27) were obtained in terms of the
infinite integrals (32) and (33). However, for their possible applications as mathematical
models of the more complicated systems such as periodic elastic and viscoelastic composites
{whose exact analytical solutions cannot generally be obtained), it is convenient to seek asymp-
totic solutions of equation (27). Simple asymptotic results of (27) can be obtained by seeking
solutions valid at long times, for example, times that are of the same order as the arrival
time of the disturbance at a fixed station far from the boundary mass.

To this end, we rewrite equation (28) as

i,(p) = ¢(p) exp[ —2n sinh ™ (p*20)] (34)
where p* = p/(1 + pp)*/?. Now, for small values of p, with np/w not necessarily small, we
may expand sinh™!(p*/2w) in terms of integral powers of p, and to 0(p*) obtain the equiv-
alent expression

- —nplw
= _ —_— ] 35
() = B exp| e+ | (9)
where
1, = /2 and T, = 1/240° — B2/8. (36)

A similar result to (35) can also be obtained by utilizing an equivalent alternative asymptotic
scheme in which imposed signal wave lengths are assumed large compared with the lattice
spacing. In fact, if we define the quantities

X = na, ¢ =wa, x = §l
1 =lt/c, £ =afl

where “ a " is the lattice spacing, c is the phase velocity when ¢ = 0, /is a nondimensionalizing



Discrete lattice simulation of transient motions in elastic and viscoelastic composites 239

macrodimension which, for example, may represent the wave length of an imposed signal,
and ¢ is a nondimensional quantity, then for small values of ¢, a Taylor series expansion
reduces (27) to the global partial differential equation

o’u  0%u Pu € o'u

T 5m — Pot——— ==

0t o¢ 0&“0t  120¢
which obviously is valid far away from the boundary &£ = 0. This equation has the same form
as the linear ““viscous” dispersion model proposed by Bade et al. for composites [16].
In the purely elastic case, f vanishes and (37) takes the form of the so-called * global”
partial differential equations derived in {7, 8, 1 7] to describe the response of a variety of periodic
elastic composites. These global equations are found to differ only in the material properties
and geometric arrangement dependence of their coefficients.

While the solution of (37) is important in demonstrating the qualitative response of
composites, the exact response of an actual composite cannot be obtained unless the cor-
responding coeflicients of this differential equation are derived. This is important since for
some periodic composites (see [7]) it was demonstrated that not only the values of the co-
efficients in (37) change but the sign of the highest order derivative also changes. This
resulted in a somewhat different character of this composite’s response. However, this
response can also be deduced from the solution of (37) when the sign of its highest order
derivative is changed.

Taking Laplace transform of (37) with respect to 7, followed by assuming exponential
solutions of the form i,(s) = A(s)e”*¢, then expanding for small values of &s, finally yield

+0(e3) =0 37

(s) = Flswe) exp[ s ] (38)

1 + 1,085 + 1076252
which is (35) in dimensional form.
In order to find the inverse of (35), we utilize the tabulated formula (see [12], formula
(2-4.64, 65), (1-1.38), and see also footnote following equation (17)).

o by e —
27w - | -1 - T 39

2 [L 7 (p+ )] = [ si2v/euts 1w du (40)
()],

Using (39) and (40) consecutively, and after some algebraic manipulation, the inverse of (35)
can finally be obtained for the special choice ¢(p) = 1/p as
2 Vntjwr,y u
u(H)=1- f exp(— t,u’ [4n)J (1) J, [5’—1 {w(dnt — w1, uz}uz] du. (41)
4]
If the sign of the last term in (37) changes (corresponding to the sign change of 7, in (35))
then (41) still holds with 7, replacing J, .

4.2 Discussion and numerical results

Compared with the response of a homogeneous elastic medium to a unit step function,
the integral term in the solution (41) represents the compound influence of the discrete and
viscous properties of the present lattice. The parameter t, accounts for viscosity, while, as
can be seen from (36), the parameter 7, is associated with the influence of both the discretiz-
ation and viscosity. The vanishing of t, and 1, (also equivalent to p — 0) reduces (41) to
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u(0) = 1= | Ji(sWofstetfn?] ds 42
4]
which is precisely the unit step function (see [i8], p. 667, No. 3)
u(ty=H (t - 3), (43)
(¢4

a result that may also be easily inferred from (35).

If 7, vanishes and 7, > 0, the spatial periodicity produces superposed oscillations about
the unit step boundary input. Up to the present order of approximation, these solutions are
equivalent to the solutions in terms of trigonometric functions and Airy integral (Head of
the Pulse) obtained in [17, 8] and [1], respectively. If 1, vanishes and 7, is preceded by a
negative sign, again (41) holds with 7, = 0 and J; replacing J,. For this case, the present
solution is equivalent to the Head of the Pulse approximation obtained by Sve[9] and
Nayfeh and Gurtman[7] for the quasi-shear pulse motion in a laminated composite. The
pulse now is preceded by oscillations and then a smooth rise to the steady value.

For the general case of nonvanishing 7, and 7, , the viscosity plays two roles; (i) it damps
the amplitudes of the oscillations, and (ii) increases their frequency due to the fact that it
tends to decrease the value of 7,. This latter role of viscosity is quite important because it
effectively counters the effect of discretization. In fact, if one suppresses the exponential
term, the resulting solution in (41) can be brought arbitrarily close to the unit step function
merely by increasing the “* viscosity” which, in turn, decreases the value of 1, .

Using a combination of the Romberg and the Curtis-Clenshaw quadrature routines, the
exact solution (32) was integrated numerically for r = 10, w = 0-5 and for the two values of
the viscosity parameter, § = 0 and § = 0-2. Results for the unit displacement boundary input
vs time are shown in Fig. 4 as solid lines. For the sake of comparison, the corresponding
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Fig. 4. Transient pulse results: Exact vs approximate.
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approximate solution (42) is also shown on the same figure in broken lines. The comparison
shows excellent correlation of the exact and approximate results, particularly near the wave
front. This behavior is also typical of the existing correlation between exact (ray-theory
numerical calculations) and approximate solutions obtained for disturbance propagation
normal to the layers of a laminated composite by Hegemier and Nayfeh[17]. Finaliy,
results from (42) showing the relative influence of B are shown in Fig. 5.

wt

Fig. 5. Spectrum of viscosity influence on transient pulses.
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AGerpakt — Hecaenyrores IUCKPETHBIE BA3KHE PEIIETKH, C LEbI0 MaTEMAaTHYECKOro Moze-
TMAPOBAHAS PACIPOCTPAHEHN OGIIMX BO3MYLICHUH B IIOLY-BECKOHEYHBIX YIOPYTHX M BA3KO-
YIPYTHX TEPUOAMYECKHX COCTABHBIX Marepuanax. [IpEMeHseTcs MeTOX HHTErpalbHOro
npeobpa3oBaHus, A ONPeNeneHus CTPOroro U IPHGIHKEHHOIO PELICHHI [JIA 9THX CITyYaes,
B KOTOPBIX BS3KOCTH BBEAEHA K YIIpyro#i peuerke mytem J00aBneHHs aMOpTH3aTOPOE B 00a
PANbI ¥ NAPANJIENbHBIX K IPYXHHAM, COSIUHAIOUX CMEeXHbIC yacTHubl TTonyyarorcs, Takke,
pellieHna AiA CIUIOHIHBIX MOJENel (U1 M34e3alOnIHX NapaMeTpos PelIeTKH), KaK Hernocpen-
CTBEHHO WJIHM B KayeCTBC CNCHUANBHBIX Cly4aes. YKa3bipaeTcs, 4TO 3(deKT nepHOaHuecKoR
JHCTIPETHIAIMHA B 3THX CHCTEMAX BLI3LIBAET KONEBAHMs OKOIO PEISHUH IUIst CIUIOLUTHOM CPEHbL.
CpaBHeHHE CTPOroro ¥ NPUGTIKEHHOrO PEIUCHHH IPOABIAECT OTJIMYHYIO KOPPE/IALUIO, OCO-
6enHo BOMH3M GpoHTA BOJHEL



